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ABSTRACT

Many users of hearing aids report challenges when lis-
tening to music. In the future, it may be possible to develop
hearing aids that have electrodes which monitors brain activ-
ity in real-time and adapts the filters on the hearing aid to
match the volitions of the user. In music, this could mean
amplifying the sound of the instrument the listener wants to
hear. One of the first steps in this research is to determine
if a machine learning algorithm can identify to which instru-
ment an individual is listening based only on a brief EEG sig-
nal. To test this possibility, participants were presented with
a series of brief tones that varied in timbre (Trombone, Clar-
inet, Cello, Piano and Pure Tone) while their ongoing EEG
was recorded from 73 electrodes. Linear Discriminant Anal-
ysis (LDA) was used. We investigated four different sets of
features – Raw EEG, ERP-based features, Harmonics-based
features and Regularity-based features. The Raw EEG based
classifier performed significantly above chance (37%) when
attempting to distinguish between responses to different mu-
sical instruments for 5-way classification. More advanced
classification algorithms or different features may be able to
better distinguish between tones with a musical timbre.

Index Terms— timbre, machine learning, EEG, hearing

1. INTRODUCTION

When listening to music, physical cues such as amplitude, fre-
quency or timbre can be used to separate instruments that are
playing concurrently. Both amplitude and frequency are uni-
dimensional, can be measured using a single metric (i.e., deci-
bels or Hertz), and have a direct, albeit non-linear relationship
with a perceptual correlate (i.e., loudness and pitch). Timbre
is multidimensional, and is defined as the quality of sound that
differentiates two sounds with the same loudness, pitch loca-
tion and duration [1]. It is what makes a guitar and piano play-
ing the same note at the same amplitude sound different from
each other. At the physical timbre is often associated with the
relative amplitude of the harmonics, the amplitude dynamics
of each harmonic, or the onset/offset slopes. Perceptually,
a technique called multi-dimensional scaling (MDS) [2] has
been used to determine how acoustic properties interact to en-

gender the perception of timbre. MDS involves mapping dis-
similarity in perceived timbre into a multidimensional space
and attributing it to acoustical features of the sound.

Understanding how the brain represents musical timbres
is a critical step in understanding how the brain uses timbral
cues to perceptually segregate instruments during music lis-
tening. This type of research could benefit the development of
Brain Computer Interface (BCI)-based hearing aids that could
use an individual’s ongoing electroencephalogram (EEG) sig-
nal to identify which incoming acoustic information could be
selectively filtered, compressed, or amplified so that the hear-
ing aid would adapt to both the acoustic environment that they
are in, and the volitions of the listener.

While there have been previous studies that have focused
on auditory attention to instruments, these studies do not fully
explore how different characteristics of sound are represented
in EEG data. Accordingly, the goal of this study is to deter-
mine if EEG data recorded while a person listens to different
instruments can be classified on a trial-by-trial basis.

Previous studies on timbre discrimination show that per-
ception of different timbres can indeed be encoded in EEG
data. Auzou et al. (1995) reported that a timbral discrimina-
tion task led to changes in the EEG signal originating from
the right hemisphere [3]. Meyer et al. (2006) reported that
the amplitude of the N1 and P2 components of the auditory
evoked response were larger when evoked by a musical in-
strument compared to a sine wave tone. However, both these
studies made use of analysis based on event related poten-
tials (ERPs) averaged over multiple trials. ERP based analy-
ses normally require averaging multiple trials together in or-
der to observe reliable and measureable peaks in the wave-
form. Accordingly, at the single trial level, it may be possible
to measure peaks retrospectively. That is, a grand average
of multiple trials can be used to identify when and where a
peak occurs in the ERP waveform. Using this information,
the amplitude of the waveform can be extracted at specific
electrodes during a specific epoch that lines up with a grand
average. This may not be practical in a real-world scenario
without some prior knowledge of the expected dynamics of
the evoked response.

Treder et al., in a multi-streamed oddball experiment,
used binary Linear Discriminant Analysis (LDA) classifiers
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to classify deviants into “attended” and “unattended” at a
single-trial level. Both a general classifier and instrument-
specific classifiers were explored. Results showed that the
instrument-specific classifiers performed better than the gen-
eral classifier, further supporting the idea that perceptions of
different timbres were encoded differently in the EEG and
therefore could possibly be detected by machine learning
algorithms [4].

While stimulus reconstruction and ERP-based approaches
have been explored in polyphonic music, our focus is on
single-trial classification based on musical timbre. We ex-
plored whether perception of different instruments is dis-
tinctly encoded in EEG data such that it can be classified on
a single-trial basis using machine learning. We also explored
the effectiveness of different types of features.

2. MATERIALS AND METHODS

2.1. Participants

Fifteen participants were recruited for the study. However,
due to technical difficulties with the EEG system data from
only 10 participants (27 ± 11; 7 female, 3 male) were avail-
able to be used. Participants recruited were required to be
right-handed and have normal hearing. Hearing thresholds
were screened for using the Pure Tone Audiometry (PTA) as-
sessment. Of the 10 participants included in the final data set,
one was a formally trained musician, four were self-taught,
and five were non-musicians. The amount of time partici-
pants spent actively listening to music - that is, in a focused,
engaged manner - ranged from 0 to 27 hours a week.

2.2. Stimuli

The stimuli consisted of computer-generated tones with an F0
of 220 Hz (REAPER, Cockos, Inc., San Francisco, California,
United States) in five different timbres, one in Pure Tone - a
sine wave comprised of only a single frequency component
- and the other in tones of four different instruments - the
Clarinet, Piano, Trombone and Cello. Each Tone was 1s in
length, and were normalised to -23 dB LUFS and presented
at 70 dB SPL. Each of the 5 instrument tones were presented
200 times in sets of 5. Figure1 displays the sound envelopes
of the tones used, and the amplitude spectrum of the tones.

2.3. Procedure

Participants first completed an orally administered question-
naire which included questions about their demographics and
experience with music. Once this was done, participants were
seated in a sound-attenuating booth and had their audiometric
thresholds assessed using Pure Tone Audiometry (PTA). First,
to ensure participants had normal hearing, pure-tone thresh-
olds (PTTs) were measured by air conduction using ER-3A

insert earphones evaluate hearing status. All participants had
a PTT below 25 dB HL [5].

For the experimental task, participants were fitted with Et-
ymotic E3A insert earphones, and were presented with the
five instrument tones at 70 dB SPL. Before completing the
task, participants were given time to familiarise themselves
with the timbral differences of the 5 stimuli. Each participant
was presented with a total of a thousand tones (200 per stim-
uli), which was broken down into 4 blocks of 250. Within
each block, each instrument tone was presented in sets of 5.
At the end of each set of 5 identical instrument tones, partici-
pants were asked to identify what tone they heard by pressing
a button on a response box. The names of each of the five
instrument tones was presented on a screen while they made
their selection. Participants were easily able to classify the
instruments, with average accuracy above 95%

2.4. EEG Recording and Preprocessing

EEG was recorded from 70 channels (64 electrodes and 6 face
electrodes) at a sampling rate of 2048 Hz.

A highpass filter of 0.1 Hz was applied, and eye move-
ments were removed using Independent Component Anal-
ysis (ICA). The processed data was then re-referenced to
the mastoid electrodes, after which the data was segmented
into epochs by stimulus type into 2s segments, including a
1-second pre-stimulus baseline.

2.5. Feature Extraction

We compared the classification performance on four different
feature sets:

1. ERP-based Features: In this feature set, the amplitude,
latency and mean voltages of the N1 and P2 compo-
nents for each trial were used. The latency for each
of the components were estimated based on the grand
average ERPs across all participants.

2. Signal Regularity: Two measures of regularity were
considered: the spectral entropy and the autocorrela-
tion of the Fourier Transform between the instrument
tone and the EEG data. Spectral entropy is a measure of
the regularity of the power spectrum of a signal [6], and
has been widely used in EEG problems [7, 8, 9, 10].

In order to extract features of spectral entropy, we first
used the multitaper method for spectral density esti-
mation [11]. The spectrum was again broken down to
delta, theta, alpha, beta and gamma bands. The spectral
entropy was then computed within each of the bands
for all channels.

As another measure of regularity, we also extracted the
auto-correlation of the Fourier transform for all chan-
nels.
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Fig. 1: Figure displaying Amplitude Spectrum (top) of tones and Sound envelope (bottom) of tones

3. Harmonics-based features: The power of the frequency
spectrum around the harmonics and the subharmon-
ics of the tone - meaning around frequency points of
27.5Hz, 55Hz, 110Hz, 220Hz, 440Hz and 880Hz –
were calculated.

4. Raw EEG. The pre-processed EEG signals without any
feature extraction (i.e., the EEG signal value at each
time sample, for all 64 channels).

2.6. Feature Reduction and Training

To reduce the number of features used for classification, we
performed Principal Component Analysis (PCA). Compo-
nents accounting for 90% of the data variance were retained
and used as features in the classification. Figure 2 displays the
number of features which were retained after feature reduc-
tion. To enable real-time online processing and classification
in the long term, we chose Linear Discriminant Analysis
(LDA) for its low computational cost. Grid Search cross val-
idation was used to find the best solver for the model. First,
within-participant classification was performed. The model
was trained using 10 runs of 5-fold cross validation. Within-
participant classification was done using all the feature sets
from Section E. Next, across-subject classification was per-
formed. That is, Leave-One-Subject-Out Cross Validation
(LOSOCV) was performed, where in each iteration a model
was trained on 9 participants, and used to test one unseen

participant. This model was trained using Raw EEG as the
input only.

We measured the performance of the classifiers using ac-
curacy - the proportion of correct predictions out of all pre-
dictions made.

3. RESULTS

Figure 3 displays the within-participant classification results
for the four feature sets. To compare these classification ac-
curacies against chance, the class labels were randomized and
the within-subject classification analysis (10 runs of 5-fold
cross-validation) was repeated. The participant accuracies
with the true and random labels were compared via a one-
sided paired sample t-test. The results indicated that the clas-
sifier trained on Raw EEG (M = 0.381, SD = 0.16) and ERP-
based (M = 0.32, SD = 0.16) features on average performed
significantly above chance (p = .026 and p = .006 respec-
tively), but those trained on harmonics (M = 0.21, SD = 0.02)
and regularity-based features (M = 0.21, SD = 0.03) did not (
p = .1 and p = .83 respectively).

A further independent samples t-test against chance was
performed within each participant for classifiers trained on
Raw EEG and ERP-based features. Accuracies achieved for
8 out of 10 participants were significantly above chance (p <
.001) for both Raw EEG and ERP-based features.

Classifier accuracy for each individual participant by fea-
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ture is shown in Table 1.

Table 1: Table of LDA classifier Accuracy by Participant

Participant Raw EEG ERP-based Regularity Harmonics
P2 0.22 0.22 0.27 0.20
P4 0.22 0.20 0.20 0.21
P5 0.19 0.19 0.19 0.19
P6 0.47 0.32 0.22 0.22
P7 0.52 0.31 0.24 0.18
P9 0.26 0.24 0.19 0.19

P10 0.45 0.56 0.21 0.25
P12 0.42 0.28 0.15 0.20
P14 0.70 0.65 0.21 0.20
P15 0.36 0.25 0.20 0.21

The LOSOCV model yielded a mean accuracy of 28%,
(SD = 0.048) across the 10 participants, performing signif-
icantly above chance of 22.1% (p = .003). Chance level
was computed using inverse binomial cumulative distribution
function binoinv (1 - α, n, 1/c) × 100/n with parameters α
= .001, n = 1000 for 1000 samples, and c = 0.2 for 5-way
classification - a method used by Combrisson and Jerbi [12].
Figure 4 displays the difference in performance between the
two models.

4. CONCLUSION

From the results above, we see that classifiers trained on Raw
EEG and ERP-based features performed significantly above
chance, while those trained on harmonics and regularity based
features did not perform above chance levels. Previous work
has shown that ERP-based features (i.e., N1 and P2) are mod-
ulated by timbre, which may explain why using ERP-based
features allowed classifiers to perform significantly above
chance [13, 14, 15].

The fact that the models performed better when Raw EEG
and ERP-based features were used could be an indication that
the classifier relied on temporal features for the classification.
In the ERP based analysis, specific epochs were used for the
analysis, while using Raw EEG preserved the temporal fea-
tures of the raw data. Moreover, the finding that Raw EEG
allowed for better classification accuracy compared to other
features, suggests that feature extraction might not be a nec-
essary step, thus streamlining the classification process. This
potentially makes it more ideal for real-time processing.

Furthermore, results suggest that BCI-based hearing aids
may need to be customized to each user. Given that the aver-
age performance of the LOSOCV (i.e. between-participant)
models were lower compared to the within-participant mod-
els, it is likely that each individual encodes timbre in a unique
way, possibly linked to the high variability observed in the
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Fig. 3: Classification results for within-participant model for
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Fig. 4: Comparison between within and between participant
model performance

within-participant classifiers.
Future work will involve exploring additional features and

classification algorithms that could lead to increased perfor-
mance.
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